

Precision GPS Time & Frequency Reference with SnapShot™ Technology

Operation Manual

1.0 Introduction

The GlobalSync GPS Reference Kit is a high accuracy, portable calibration system. It consists of a Datum GlobalSync unit and a 26dB GPS antenna with a window stand and all required interconnection cables. The reference kit is used in conjunction with a (separately supplied) host processor unit.

2.0 Unpacking the GlobalSync Unit

CAUTION: Always use appropriate ESD precautions when handling the GlobalSync system components.

The GlobalSync Reference Kit carrying case contains the following items:

- 1ea. GPS Antenna
- 1 ea. Portable Antenna stand (for use when installing in a window location)
- 1 ea. Antenna Cable, 75 feet (for use when installing the antenna on a mast)
- 1 ea. Antenna Cable, 25 feet (for use when installing the antenna in a window)
- 1 ea. GlobalSync GPS Time and Frequency Reference Unit with Power Supply
- 2 ea. GPS Input Signal Cable, BNC to BNC, 10 feet
- 1 ea. RS232 Data Cable, DB-9 to DB-9 connectors, 10 feet
- 1 ea. AC Power Cord for system 110V power supply, 6 feet (in unit storage compartment)
- 1 ea. GlobalSync Operation & Maintenance Manual

Verify that all of the listed items are included in the kit.

3.0 System Setup and Antenna Location

Select a location for the antenna. For proper System operation, the antenna must have a clear unobstructed view of the sky to ensure a direct line of sight to the GPS satellite. Mounting on a mast, away from tall buildings and trees that block this view is preferred (use the 75 foot antenna cable). If this mounting option is not possible, it may be installed at a window with a good view of the sky, using the portable antenna stand and the 25 foot antenna cable provided. Additional antenna installation information is available in Section 2 of the GlobalSync Operation Manual.

Connecting the system cables should be accomplished in the following order:

- #1 Connect one of the 10 ft. BNC signal cables from the 1 PPS output connector to the host processor.
- #2 Connect the other 10 ft. BNC signal cables from the 10MHz output connector to the host processor.

- #3 Connect the Antenna cable to the RF In connector.
- #4 Connect the DB-9 cable between the RS232 port and the host processor.
- #5 Connect the AC Power cable to the system power supply and plug it into the appropriate wall outlet. This automatically powers the GlobalSync system.

4.0 System Operation

See the host processor software manual for system operation (section 3 of the GlobalSync manual, if using Datum supplied operating software).

NOTE: A stabilization period of 4 hours with continuous unobstructed view of the GPS Satellites is required in order to achieve rated performance characteristics of the GPS Reference Kit.

LIMITED 1 YEAR WARRANTY

"The seller warrants that each article of goods sold by it will at the time of shipment be free from defects in materials furnished and workmanship performed by the seller. This warranty and seller's liability are limited to either granting credit or repairing or replacing, at seller's option, with reasonable promptness after return to seller of any article which is disclosed to seller's satisfaction to be defective, and only if said article is returned to the seller promptly after discovery of such defect and in no event later than *12 months* (or such other time period as may be specified in writing as a warranty period for a particular article) from the date of delivery thereof. Normal transportation charges in connection with an article returned shall be at the seller's expense, but only if the seller is responsible under the terms of this warranty. This warranty does not extend to any article which has been subject to misuse, neglect, or accident, nor does it extend to any article which has been repaired or altered by other than the seller. THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES EXPRESSED OR IMPLIED, INCLUDING ANY WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE AND THE RIGHTS AND REMEDIES PROVIDED HEREIN ARE EXCLUSIVE AND IN LIEU OF ANY OTHER RIGHTS OR REMEDIES. IN NO EVENT SHALL SELLER BE LIABLE FOR CONSEQUENTIAL DAMAGES."

DATUM will be happy to answer any application or usage questions which will enhance your use of the unit. Please address your requests or correspondence to: DATUM, 3 Parker, Irvine, California 92618-1605, Attention: Sales Department. In the U.S.A. call. 1-800-337-2866, or (949) 598-7600, Fax: (949) 598-7650. E-mail: custservice@datum.com

Visit our web site at www.datum.com

European customers may contact: Datum GmbH, Fichtenstr 25, 85649 Hofolding, Germany, Tel: +49.(0)8104.6624.0; Fax: +49.(0)8104.6624.28.

Datum — Proprietary

Copyright 2002 Datum

All Rights Reserved Printed in U.S.A.

This material is protected by the copyright and trade secret laws of the United States and other countries. It may not be reproduced, distributed or altered in any fashion, except in accordance with applicable agreements, contracts or licensing, without the express written consent of Datum Irvine.

For permission to reproduce or distribute please contact: Publications Supervisor, Datum Irvine, 3 Parker, Irvine, CA 92618–1605.

Notice

Every effort was made to ensure that the information in this document was complete and accurate at the time of printing. However, the information presented here is subject to change.

Applicable Patents

This product is protected under the following U.S. patent numbers: 5,457,430, 5,489,821, and patents pending.

Trademarks

STARLOC II is a registered trademark of Datum.

Other trademarked terms may appear in this document as well. They are marked on first usage.

Table of Contents

SE	CTION ONE	
1.1	Introduction	1
	1.1.1 Overview of Features and Applications	1
	1.1.2 Advantages of SnapShot® Technology	1
	1.1.3 The Global Positioning System (GPS)	2
	1.1.3.1 Acquisition of GPS Satellites	
1.2	GlobalSync Theory of Operation	4
	1.2.1 System Initialization	
	1.2.2 Series of events - stand alone mode	
	1.2.3 External Aiding	4
	1.2.4 Field Upgrade Capability Using Flash Memory	5
1.3	GlobalSync Specifications	
	1.3.1 Electrical Specifications	
	1.3.2 Environmental Specifications	
	1.3.3 Physical Specifications	
SE	CTION TWO	
2.1	Installation	9
	2.1.1 GPS Antenna Guidelines	9
	2.1.2 GPS Antenna Installation	. 10
2.2	Setting Up the GlobalSync Unit	. 11
	2.2.1 Unpacking the Unit	. 11
	2.2.2 Checking Contents	. 11
	2.2.3 Site Considerations	. 11
	2.2.3.1 Buildings, Equipment Cabinets and Grounding Systems	. 11
	2.2.3.2 Power Requirements	. 12
	2.2.3.3 Heating, Cooling and Ventilation Requirements	. 12
	2.2.3.4 Cabling Issues	. 12
2.3	Mounting the GlobalSync Unit	. 13
2.4	Connecting Cables to the GlobalSync Unit	. 13
2.5	Unit Start-up	. 14
2.6	System Operation	. 14
SE	CTION THREE	
	Installation/Diagnostic Tools	. 15
	TimeKeeper Protocol Converter and Communications Interface	
	Operations and Management System Utility	
	3.3.1 GUI Interface and Graphic Screens	
	3.3.2 Graphic Program Screens	
	3.3.3 Pull Down Menus	

Appendix A
TimeKeeper Communications Packet Structure
GlobalSync TimeKeeper ASCII Command List and Responses
List of Drawings
List of Di awings
Figure 1-3 GlobalSync Simplified Block Diagram
Figure 2-1 Mask Angle Definition
Figure 2-3 Cable Connections and Mounting of STARLOC II
Figure 3-1 Primary Timing Screen
Figure 3-2 XO Oscillator Communication Summary Screen
Figure 3-3 GPS Receiver Screen
Figure 3-4 System Status Screen
Figure 3-5 Disciplining Activity Window
Figure 3-6 Setup Pulldown Menu
Figure 3-7 Set COM Port Menu
Figure 3-8 Control Menu (When Disabled)
Figure 3-9 Enabled Administrative Control Menu
Figure 3-10 Administrative Control properties Menu
Figure 3-11 Control Menu (When Enabled)
Figure 3-12 Set Device Controls Menu
Figure 3-13 Issue Disciplining Menu

About this Document

Purpose

This document provides basic recommendations for applications using Datum's **GlobalSync**. These guidelines are of necessity generic, as specific product requirements vary from application to application.

Technical Support and Warranty Coverage

Warranty and non-warranty repair support for the **GlobalSync** is provided by Datum Irvine's Customer Support group. Designer technical support is provided by application engineering from the Irvine facility's Marketing department during the design process.

Scope

This material consists of a brief description of **GlobalSync** design supported by diagrams, description of environmental issues, installation guidelines, required mating connectors, and unit operation. This document is available in both a hardcopy and in Adobe Acrobat Reader (.pdf) electronic format.

Intended Audience

This document is intended for engineers and telecommunications professionals who are designing, installing, operating or maintaining time, frequency, and synchronization systems having a requirement for a small GPS disciplined time and frequency reference.

Prerequisite Skills and Knowledge

To use this document effectively, the user should have a good understanding of digital telecommunications technologies, working knowledge of protocols and analog frequency generation and synthesis techniques.

SECTION ONE

1.1 Introduction

The **GlobalSync** is a precision GPS time & frequency reference unit in a small, low-cost package. The basic components of the unit are a quartz oscillator, a Global Positioning System (GPS) receiver and a power supply contained in sealed case. With **GlobalSync**, it is now possible to reliably and economically achieve the precision time and frequency synchronization required by high-speed digital networks in applications such as time stamping, E-911 location, cellular, and fixed wireless systems.

1.1.1 Overview of Features and Applications

GlobalSync incorporates an advanced GPS receiver, precision disciplined oscillator and improved time synchronization technology. The unit's GPS receiver receives L1 C/A coded signals from visible GPS satellites using an antenna/preamplifier unit, an integral part of the system. After the hardware has been properly installed, at power up the system firmware begins collecting data to build the timing almanac and ephemeris for satellite coordinates. These data are used to create the initial reference position. Afterwards, the GPS receiver automatically acquires satellites as they become visible and accesses their data to perform the necessary position and timing calculations.

1.1.2 Advantages of SnapShot™ Technology

With proprietary SnapShot[™] technology, **GlobalSync** is capable of quickly performing a self-survey and locking system time for each each unit in a network of **GlobalSync** to within 20 nsec (RMS) of each other. In routine operation, only one GPS satellite need be visible in order to maintain system accuracy. This is especially important in a crowded urban environment where it is difficult to find ideal antenna locations with an unobstructed view of the sky. DATUM's advanced T-RAIM algorithm constantly monitors the health of individual GPS satellites, so that a malfunctioning satellite does not negatively affect system accuracy.

During system operation, the GPS receiver disciplines the crystal (XO) oscillator. If the system loses GPS disciplining, the crystal oscillator alone will provide the timing and frequency reference functions. If the oscillator must operate without benefit of GPS disciplining, it begins "flywheeling" and enters what is know as "holdover" mode. Timing and frequency accuracy will be maintained for a specified period, but the oscillator's frequency reference will gradually drift. Ideally, GPS disciplining should be restored before the oscillator drifts out of its specified timing accuracy.

The formula for frequency error and time error accumulation is:

Frequency Error (in parts in 10¹¹) X Number of 100 seconds of Flywheeling = Timing Error (in nanoseconds)

Optional PC Interface diagnostic software runs on a laptop which is connected directly to the unit at the cell site and allows the operator to monitor the operation of the **GlobalSync**. The system

responds to user requests and displays six different data categories relating to maintenance, system status and operation, and site configurations.

1.1.3 The Global Positioning System (GPS)

GPS is a satellite-based radio navigation system designed by the US Department of Defense to provide continuous velocity, timing and three dimensional positioning information on a global basis.

To ensure a global coverage of any given point on earth so that 4 satellites are in view at any time of the day, the GPS network must consist of a minimum of 18 satellites in 6 different orbits forming a "birdcage" approximately 10,000 miles above the earth. Each satellite circles the earth twice a day in a 12 (sidereal) hour orbit.

When a **GlobalSync** is first powered up, four satellites must be visible on a continuous basis until the initial parameters for the site have been determined. After the site position, altitude and time have been established, only one satellite is required for the unit to establish and maintain precise timing. However, if more satellites are visible, the T-RAIM (Time Receiver Autonmous Integrity Monitoring) algorithm of the GPS receiver detects and removes from the solution those satellites that exceed a predetermined time threshold. This will protect against failed satellites that broadcast inaccurate GPS time and position solutions. This T-RAIM algorithm adds an extra level of system reliability to the timing application.

Since the accuracy of any position fix or velocity computation is directly proportional to the accuracy of the time reference employed, precision timing is the key element of the GPS concept. Each satellite transmits precise time and frequency information as uniquely encoded data transmissions derived from a precision on-board clock, which enables a receiver to determine the distance to the satellite by measuring the arrival time of the signal. Because each satellite broadcasts its own position data, three position dimensions and the site's receiver clock bias can be derived from simultaneously tracking four satellites and their transmissions.

Satellite data transmissions include orbital parameters that describe the satellite's position and allow identification of the position (in orbital coordinates) of any unknown receiver/antenna locations on the earth's surface. These positions are given in a three-dimensional Cartesian coordinate frame defined by the Conventional Terrestrial System (CTS). Standard geodesy documents contain the formulas for transforming Cartesian coordinates into geodetic coordinates - latitude, longitude, and ellipsoidal height.

GPS satellites transmit codes on two L-band frequencies (L1 and L2). The secure precision (P) and coarse acquisition (C/A) codes are transmitted on the L1 frequency (1575.42 MHz). The L2 frequency (1227.6 MHz) is used for P code only. Access to the P code is restricted to authorized users.

Commercial receivers operate on the C/A code. A ground based system of antennas, master control stations, and monitor stations track the satellites through their broadcast signals as the satellites rise over the horizon. Data is uploaded at least once a day to provide a prediction of satellite ephemeris (orbital characteristics) and clock behavior for the next day's operation.

The precision of the GPS Master Control Station is traceable to UTC through the time standards at the United States Naval Observatory, USNO, Washington and the United States National Institute of Standards and Technology, NIST.

The unit receives the L1 C/A coded signals from the GPS satellites and using them automatically computes its position and maintains precise timing.

1.1.3.1 Acquisition of GPS Satellites

The GPS receiver normally operates in two modes: "ACQUIRE SAT/POSITION HOLD" or "POSITION FIX". In Position Fix mode, the GPS receiver requires 3 or more satellites to compute the site position and time. In Position Hold mode, the receiver needs only one satellite for timing purposes.

Upon powering-up the system, the unit begins operation configured in Position Fix mode. By default, the initial date and time will be incorrect. This forces the GPS receiver into a cold power-up state (cold start) and it begins searching the sky for all available satellites. After one satellite has been acquired, the date and time are set automatically from the satellite. When three or more satellites are tracked, automatic position computation is initiated. The firmware averages the receiver position for two minutes. The time interval to obtain the initial fix during a cold start is typically 15 minutes (with a maximum of 40 minutes).

At sites where four satellites are not visible simultaneously, the operator must enter the site position manually using DATUM's diagnostic software. Once the position fix has been entered, the **GlobalSync** switches to Position Hold mode.

1.2 GlobalSync Theory of Operation

1.2.1 System Initialization

The **GlobalSync** requires no outside assistance for normal operation, the system is capable of self-initialization and recovery from loss of power. Provisions have been added to store site-specific data in NVM and accept parameters via the serial interface for faster acquisition or higher accuracy. See Section 3 for information on Datum's Operation and Management software utility.

1.2.2 Series of events – standalone mode

Following the application of power the **GlobalSync** performs a self-test. While the self-test is in progress the system is unable to accept external commands via the serial interface (refer to Section 3). Should the system fail self-test the user will be notified via a fault flag set in the Alarm Indicators field of the System Status page or inability to establish communication via the serial interface.

Once the self-test is complete the system will begin determining its location, this is accomplished via the self-survey function. The self-survey begins by averaging the first 10 3D position solutions derived from GPS. This averaged position is then used as the starting position for an on-going average. This averaging will continue for approximately four hours (factory default, can be user defined) with the rolling average position displayed in the Parameters window of the GPS receiver screen. The duration of the self-survey may exceed 4 hours as only valid 3D position solutions are accepted. Should satellite visibility drop below 4 and the system enter 2D position solution mode or less than 3 satellites for acquisition mode the self-survey counter will not increment. Following the successful completion of a self-survey the three-dimensional position is stored in NVM for future use.

When the position of the system has been established the GPS receiver within the system enters a position-hold mode where Latitude, Longitude and Altitude are frozen. The system then aligns the system 1 PPS as precisely as possible with the 1 PPS derived form GPS. This is indicated as "overdetermined" Clock mode for the Receiver Mode within the Parameters window of the GPS Receiver screen. The estimated system accuracy can be monitored by viewing the PPS and Frequency Quality window on the System Status screen. In a nominal operating environment a display of +/- 50 nsec offset for the PPS and +/- 10 ppb for the 10 MHz indicate that the system has successfully aligned itself to GPS time and is disciplining normally.

1.2.3 External Aiding

In applications where compensation for delay caused by the RF connecting cable is required the user has the option of calculating that delay and entering a correction value into the Set Device Controls pop-up window. This is accessed via the Control, Set Device Controls pull-down window. The default value is –2.4700e-007 to compensate for 100 feet of RF cable delay. To access this function Administrative Controls must be enabled (refer to Section 3).

Caution!

Administrative Controls are password protected, the factory default password is no password, simply press enter or click on OK to enable this function. The user has the option of entering or changing the system password via the Administrative Control Properties pop-up window under the Control, Properties pull-down window. Should the user lose the password it will be necessary to uninstall and then reinstall the Datum O&M software utility.

The user also has the capability of entering a three-dimensional position in the form of Latitude, Longitude and Altitude referenced to WGS 84. It is recommended that this be done immediately after the completion of the self-test before GPS satellites are acquired. Once a position is entered the self-survey is terminated and the externally entered position used as the basis for time transfer. Care should be taken to ensure that this position is correct, as this data is not qualified by the unit as is a stored position.

1.2.4 Field Upgrade Capability Using Flash Memory

The **GlobalSync** contains Flash PROMs. This feature enables complete reprogramming of the unit in the field. This can be done locally via a laptop computer or the User's network. All customers are notified via Email when a firmware upgrade is available. This notice includes a detailed description of the enhancements offered. Firmware upgrades are offered free of charge to customers with equipment under warranty.

1.3 GLOBALSYNC SPECIFICATIONS

1.2.1 Electrical Specifications:

Inputs: L1 GPS (1575.42 MHz) C/A code (from GPS antenna)

AC Input Voltage: 90 - 264 VAC @ 1.25A Max

Outputs: 1 PPS TTL @ 50 ohms

10 MHz TTL @ 50 ohms, coherent with 1 PPS

+5V@80ma for antenna Amp.

RS-232 for UTC/GPS time/status alarms

Timing Accuracy: <20 nsec RMS between units over any 20 minute interval

(under limited temperature variations)

Holdover¹: <1 µs over 2 hours

Spurious: Harmonic: <-40 dBc

Non-Harmonic: <-80 dBc

Time to first position fix: <5 min, 90% of time

Timestamp Message: Calendar date and time to 1 second using

Datum Serial Binary Interface Protocol

RS 422 Message UTC Time (300 ms), status alarm

Antenna Cable: 0 - 350 ft. Lengths in excess of 500 ft require amplification

1.3.2 Environmental Specifications:

Operational Humidty: <90%, non-condensing

Operational Altitude: -200 ft to 40,000 feet (12,200 meters)²

Operating Temperature: 0°C to $+55^{\circ}\text{C}$ (see operating characteristics)

Non-operating Temperature: -55°C to +85°C

Operational Airflow: No vertical airflow and minimal horizontal airflow

of 15ft/min

Operating Characteristics under following conditions:

• to 75°C: when convection cooled

• to 85°C when forced-air cooled with 100 LFM:

• to 90°C for less than 10 minutes

CAUTION: If these limits are exceeded, the unit may suffer permanent damage

due to overheating

ESD Advisory: ESD sensitive. Observe precautions and wear grounding

devices when removing modules or connectors.

1.3.3 Physical Specifications:

Size: 12.0" L X 10.0" W X 2.0" H

Fault Indicators: Software controlled

Status: LED Description: ON Color: green

Antenna Input: Type F

Outputs: 1 PPS and 10 MHz: BNC connectors

RS-232: DB-9M

¹ Holdover refers to operation without GPS signals after an initial period of 8 hours of proper GPS reception.

² Above 5,000 ft, the upper operational temperature requirement is derated 1°C per 1,000 ft above 5,000 ft.

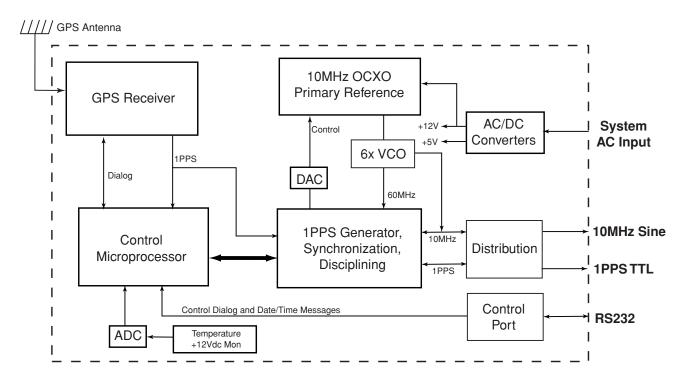


Figure 1-3. GlobalSync Simplified Block Diagram

SECTION TWO

2.1 Installation

2.1.1 GPS Antenna Guidelines

The GPS antenna is designed to receive transmission signals from a network of GPS satellites in orbit above the earth. In order for the GPS antenna to receive the transmission signal from the GPS satellite, the GPS antenna must have a direct line of sight to the satellite. The optimum site for the GPS antenna would provide an unobstructed view of the skyline in a 360 degree circle around the antenna installation site and have no obstructions above a 7 degree angle measured from a plane running through the antenna and a line of sight from the antenna to the top of the obstruction (see Figure 2-1).

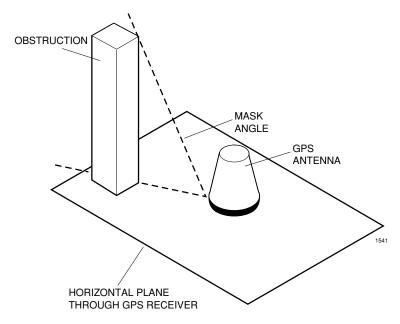


Figure 2-1. Mask Angle Definition

This angle measured from the horizon to the top of an obstruction is generally referred to as the mask angle. Under typical conditions, a satellite will be observable by the GPS antenna when the mask angle is 7 degrees or less, and there are no obstructions between the satellite and the GPS antenna. The GPS antenna installation site shall be selected such that a maximum of 25% of the sky is "masked" by obstructions such as buildings, mountains, etc. and there is a stand pipe, or mast, or other appropriate mounting location for the GPS antenna kit.

Another consideration for the GPS antenna site is that there are no antenna, microwave dishes or other sources of rf radiation nearby that could affect reception.

2.1.2 GPS Antenna Installation

The GPS antenna must be mounted in an unobstructed location away from tall buildings and trees that would block its view of the horizon (and the GPS satellites passing overhead). The roof of a structure or on an antenna tower is ideal. It is important that the GPS antenna be mounted so that it is vertical. Bolt the antenna bracket to a center cross member, or to a sidearm. Sidearms extend the antenna three to six feet away from the tower and reduce the influence of the tower mast on the antenna's reception.

Cables should be secured with service loops for strain relief and corrosion-resistant hardware. The cable can be attached to the tower by means of beam clamps, butterflies, donuts, snap-in clamps, etc. The method is dictated by the type of tower. Attach mounting hardware every three feet for both vertical and horizontal runs. To prevent water from following the cable into the structure entry port, allow enough slack for a drip loop. In areas where snow and ice may be present, a horizontal ice bridge mounted above where the cable crosses from the tower to the structure entry port will prevent damage from ice chunks falling off the tower.

In climates where electrical storms occur, a Polyphaser® lightning arrestor can be installed according to the manufacturer's instructions included with the arrestor and grounded to a single point ground window inside the structure.

2.2 Setting up the GlobalSync

2.2.1 Unpacking the unit

Use proper ESD precautions when unpacking the unit. It is shipped in a static protected bag inside a foam container. A CD-ROM containing the Operations and Management System Software is also included. Check the unit for damage. If damage is found, examined the shipping container. Contact the shipper if the unit appears to have been damaged during shipment. Do not discard the shipping carton until the shipper has an opportunity to make an examination.

2.2.2 Checking contents

Compare the contents of the shipping carton against your sales order and the shipping invoice to make sure you have recieved a complete shipment. If you find a shortage, contact Datum Sales Department. Have your sales order number available.

The GPS antenna cable is shipped with the unit in 75' and 25' length options.

If the unit is undamaged and as ordered, you are ready to begin the installation.

2.2.3 Site Considerations

General guidelines are presented below to help with the installation. Also refer to publications similar to the ones listed below, they may prove useful during your site planning stage:

QUALITY STANDARDS, Fixed Network Equipment Installations, Motorola publication R56, Systems Center Engineering, 1301 E. Algonquin Road, Schaumburg, IL 60196

Bulletin 37916C, Grounding Kits, Type 204989, ANDREW Heliax® Products (included with kit).

Bulletin 237196, Ground Kits for Heliax® FSJ1 and LDF2 Coaxial Cable, ANDREW Heliax® Products (included with kit).

2.2.3.1 Buildings, Equipment Cabinets and Grounding Systems

Structures housing telecommunications equipment should have a concrete foundation and a wood or concrete floor whose surface has been sealed to prevent equipment contamination from dust, dirt, and other airborne particulates. Minimum floor loading should be 300 pounds per square inch. Remember when calculating the weight of new equipment to consider the rated load carrying capacity of the structure.

Equipment cabinets need to be bolted securely to the floor and arranged in such a way to have a wide and stable footprint for earthquake protection. Center mount cabinets can be fitted with outriggers and bolted to the floor. Top supports are important to prevent cabinets from toppling over on personnel. If a potential hazard of water entry exists at the site, cabinets can be anchored to *Unistrut* rails or wooden pedestals to elevate them above the floor.

Grounding of the structure and the antenna is necessary to protect equipment and personnel. An external ground ring with a grounding system attached to the antenna tower ground ring with one or more conductors is recommended. The optimum grounding system for the structure places a ground rod at each corner of the building (2' out from the building foundation) and every 15' between these corner rods. Rods should be placed at a minimum depth of 18 inches below either the finished grade or below the freeze line (whichever is the greater depth). The top and bottom of antenna cables should be grounded to either a tower member or tower down conductor to create a lightning path toward earth. Follow local codes and install grounding kits per the manufacturer's instructions (included in seperate kits).

2.2.3.2 Power Requirements

When planning for site electrical design, present and future power loading should be considered. AC power requirements should be determined before construction. Continuous load should not exceed 80% of the electrical wire rating.

2.2.3.3 Heating, Cooling and Ventilation Requirements

Equipment operating within its design environment is less likely to experience failures. Structures should be insulated and have air handling equipment capable of maintaining an ambient temperature range of +41° to +86°F (+5° to 30°C). Humidity should be controlled so that it is neither too low (causing ESD problems) or excessively high (causing moisture condensation on electrical equipment).

2.2.3.4 Cabling Issues

Cable tray systems of adequate strength and rigidity provide support and protection for cable runs. Adding expansion connectors between the trays will accommodate thermal expansion and contraction of the system. Supports should be located within 2' of either end of an expansion connector. Cable trays and ladders can extend through walls and floors as long as the openings are firestopped with an approved technique that maintains the fire resistance rating of the structure.

Cables should have broad service loops and strain relief. This keeps cables loose and gives them a better appearance.

Do not place cable trays in such a way to block building sprinkler systems or smoke detectors, or under lights or other electrical fixtures.

Cables should be routed neatly with a 2" gap (minimum) between conductor bundles. Group cables according to type so that rf lines are not mixed in with ground or control and interconnect lines.

When cables enter the building from the outside, a weatherproof port assembly should be used. This should consist of a waveguide entry plate and boot assembly. Typical commercial antenna ports will have 1 to 12 entry ports per plate. If it is necessary to insulate the opening, two plates can be installed, on the inner and outer walls with foam insulation between the plates. Two sets of cable boots are needed with this type of installation. Unused ports must be sealed with blank caps.

Ports that introduce antenna cables should not also be used to pass lighting power (to antenna lights), and building ground and control cables. This will prevent electrical interference.

2.3 Mounting The GlobalSync unit

The GlobalSync is designed for use in a stable bench or office environment, operating temperature is 0°C to +55°C. The internal environment for the unit (i.e., OEM case) must have no vertical airflow and a minimum horizontal airflow of 15' per minute.

2.4 Connecting cables to the GlobalSync Unit

The unit has five connectors on its front panel. Connect the power cable last to avoid accidental damage to the unit.

The GPS input is the connector marked RF IN. This connector receives the L1 GPS (1575.42 MHz) C/A code. Attach this cable first.

The connector marked RS-232 is a DB-9 connector used for an external PC interface for the Operations and Management software (Refer to Section 3 of this manual).

There are two output connectors. The 10 MHz out is through a BNC connector. This is a sine output @ 50 ohms, coherent with 1 PPS. The 1 PPS output is a TTL output through a BNC connector @ 50 ohms. The leading edge of the pulse is synchronized to UTC. The pulse shaped may be affected by the distributed capacitance of the interface cable.

The power input connector accepts 90 - 264 MAC @ 1.25 Amps maximum. Once all other connectors have been attached, install the power cable.

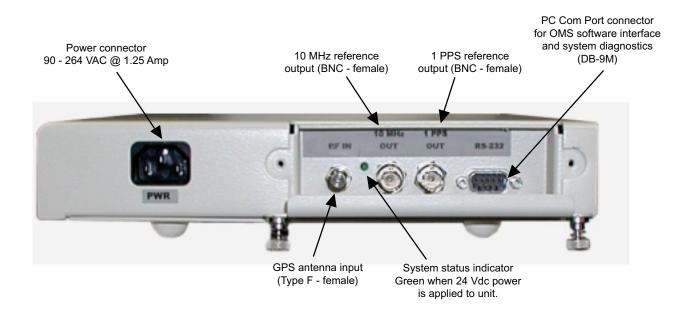


Figure 2-3. Cable Connections and Mounting of the GlobalSync.

2.5 Unit Start-up

Once power is applied, the unit starts up automatically, quickly performing a self-survey and locking to local system time. In routine operation, only one GPS satellite need be visible to maintain unit accuracy. This accommodates the obstruction crowded urban environment where it can be difficult to find antenna locations with a clear view of the sky. During operation, an advanced T-RAIM algorithm independently monitors the health of individual GPS satellites so that information from a malfunctioning satellite will not effect system accuracy.

2.6 System Operation

The GlobalSync operates automatically once locks to GPS timing. It uses Datum's proprietary **Snapshot**™ technology to allow a network of GlobalSync units to lock system time to within 20 nsec (RMS) of each other while tracking a single GPS satellite.

The operator sets-up, monitors, and makes adjustments to system (or network) parameters using the Operation and Management System (OMS) software included on a CD shipped with the unit. Use the instructions printed on the CD case insert to install the software. Refer to Section 3 of this manual for information on the features and operation of the OMS software.

An electronic file of this manual (in Adobe Acrobat pdf format) is included on the OMS CD-ROM should additional copies of the manual be required at the site. A postscript laser printer is recommended as the output device.

SECTION THREE

3.1 Installation/Diagnostic Tools

Users can choose between two software system status and diagnostic tools:

DATUM's Operation and Management Sytem Utility

or

DATUM's TimeKeeper Protocol Converter and Communications Interface

Either software can be used to install and set up, and control and monitor a GlobalSync unit.

3.2 TimeKeeper Protocol Converter and Communications Interface

The **GlobalSync** TimeKeeper firmware is compatible with the data and command packet structure of the most frequently used DOS-based binary interface protocol for configuring, monitoring and controlling a GPS disciplined clock for timing applications.

Refer to Appendix A for information on the supported command list.

3.3 Operations and Management System Utility

GlobalSync is compatible with Datum's StarLoc II GPS receiver and uses the same OMS utility. Operators can use the OMS utility StarLoc II menus for **GlobalSync**.

The Operation and Management System Utility is a system monitoring and setup tool developed by DATUM that operates in the Windows 95/98/2000 and NT environments. This utility provides screens (displayed on a PC connected to a unit or network of units) that allow the user to review the status of each unit, to run a diagnostic, and to view charts of the phase over time. Pull Down Menus allow the user to view system parameters and to make adjusments. Some control features are protected by password. If a command is unavailable or under password control, it will appear in LIGHT GRAY.

Input to the utility can be made by mouse or by keyboard. Function and keyboard keys allow menus and dialog boxes to be selected and exited.

If communication problems are encountered, reset the Com Port.

3.3.1 GUI Interface and Graphic Screens

Applicable Part Number: STARLOC II 105906-002 or -003 (compatible with

GlobalSync)

STARLOC II Plus 106400-001 or -002

Applicable Firmware: Application Firmware Version 1.10 or higher

Host Computer Operating System: Windows 95/98/2000 or Windows NT

The GUI Interface is capable of controlling up to 16 **GlobalSync** modules independently. The user has complete control with the ability to monitor or change all of the operating parameters of the system. Administrative Control is provided through the use of a user defined password. This limits access to operational parameters to authorized users.

A description of the various graphic program screens and menus, and examples of each, is presented in the following pages. **NOTE: All references of StarLoc II within the OMS are applicable to GlobalSync.**

3.3.2 Graphic Program Screens

Opening screen: – read only

The user selects which of the 16 possible **GlobalSync** modules to communicate with. The primary timing window is displayed. Values include:

- ← GPS time of week in seconds
- ← GPS week number
- ← Current GPS time offset from UTC in seconds (must be requested)
- ← Current GPS date
- ← Current GPS time

Double clicking on the unit identifier (**StarLoc II** 1, 2 etc.) opens the menu tree.

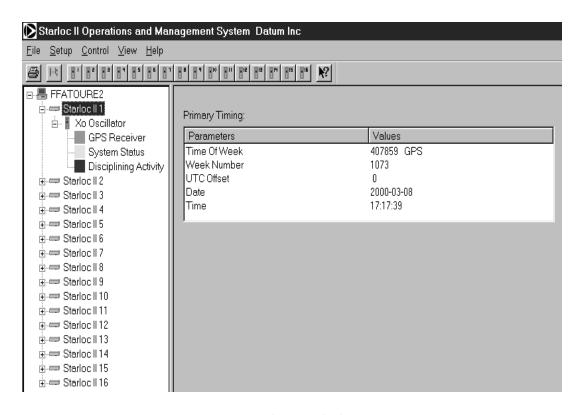


Figure 3-1. Primary Timing Screen

Xo Oscillator window: – read only

Indicates the Com port used for each **GlobalSync** in the network and its connection status.

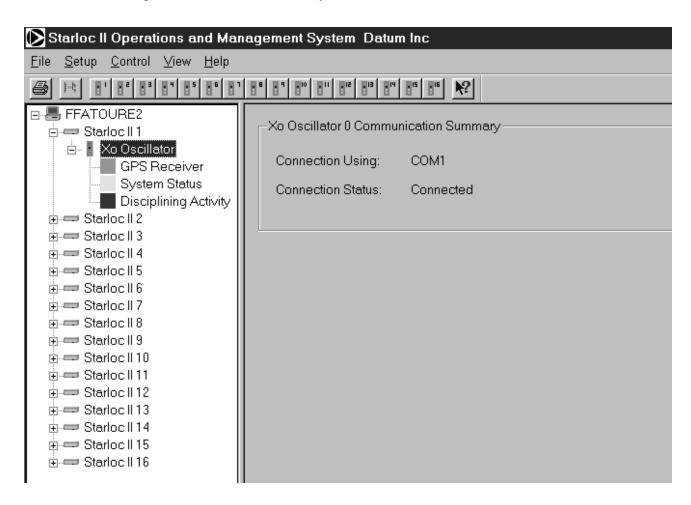


Figure 3-2. XO Oscillator Communication Summary Screen

GPS Receiver window: – read only

Opens three status windows:

- ← GPS Receiver
- ← Tracked Satellites and Signal Levels
- ← Satellite Tracking Status by Channel

GPS Receiver

- ← Receiver Mode
- ← Self-Survey progress
- ← GPS Decoding Status
- ← Latitude in degrees, minutes and decimal minutes reference to WGS 84
- ← Longitude in degrees, minutes and decimal minutes referenced to WGS 84
- ← Altitude in meters and decimal meters referenced to WGS 84

Tracked Satellites and Signal Levels

← Displays the ID number and signal strength of the Space Vehicles that are currently in track

Satellite Tracking Status by Channel

← Displays additional health and status flags concerning the spacecraft currently in track

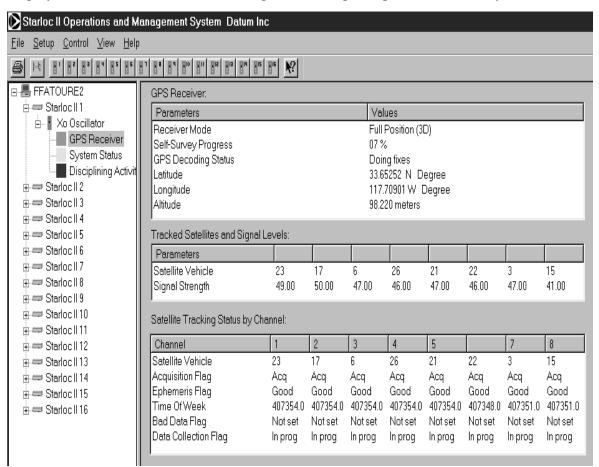


Figure 3-3. GPS Receiver Screen

System Status window: – read only

This window opens 3 status display windows:

- ← Firmware Version
- ← PPS and Frequency Quality
- ← Alarm Indications

Firmware Version

← Displays the version and release date of the Application and GPS Core firmware currently loaded within the System

PPS and Frequency Quality

- ← Internally estimated offset of the 1 PPS from the GPS 1 PPS in nsec
- ← Internally estimated offset of the 10 MHz from GPS in ppb

Alarm Indications

← Notes pass or fail status of multiple internal alarms Note: A Self-Survey alarm will be set if self-survey is in progress. This is a status message to the user that the selected StarLoc II is conducting a self-survey and not in normal mode. This is not an indication of a failure.

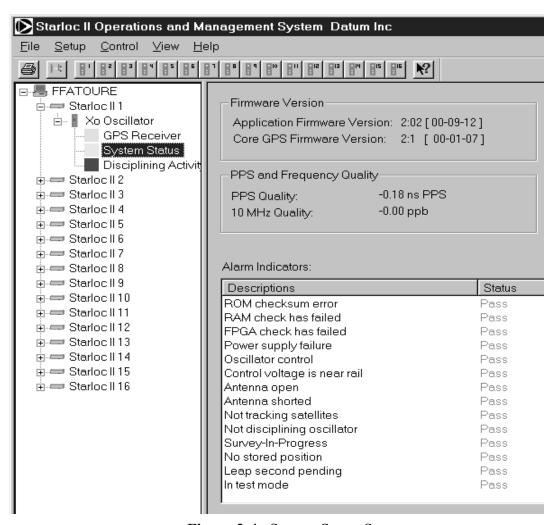


Figure 3-4. System Status Screen

Disciplining Activity window: – display only

Opens the Disciplining Activity window. Values displayed are:

- ← Disciplining Mode
- ← Holdover Duration
- ← Disciplining Status
- ← DAC Value
- ← DAC Voltage
- ← Temperature Sensor

Disciplining Mode

Displays current mode of operation; normal modes are Auto Holdover and Normal

Holdover Duration

Duration of time in seconds that the unit has been in holdover

Disciplining Status

Current disciplining mode; default is Phase Locking

DAC Value

Current DAC value in Hex

DAC Voltage

Displays actual DAC voltage; range is 0 - 5 VDC

Temperature Sensor

- ← **STARLOC II** Value fixed at 30°C
- ← STARLOC II Plus TBD

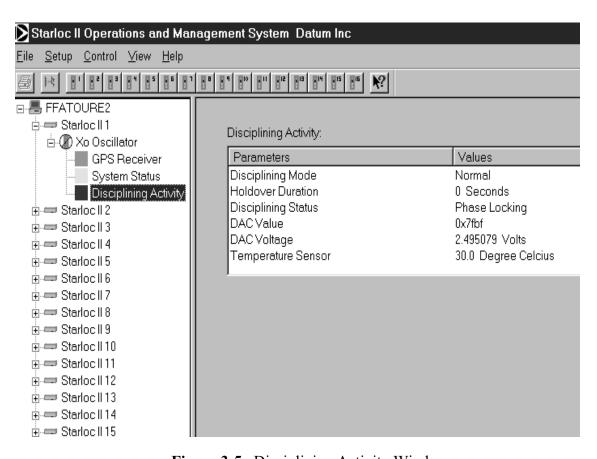


Figure 3-5. Disciplining Activity Window

3.3.3 Pull Down Menus

SETUP MENU:

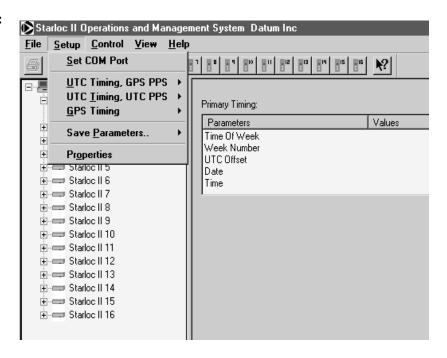


Figure 3-6. Setup Pull Down Menu

Set COM Port: Window overlaid on current screen; allows selection of COM ports for the available **GlobalSync** units.

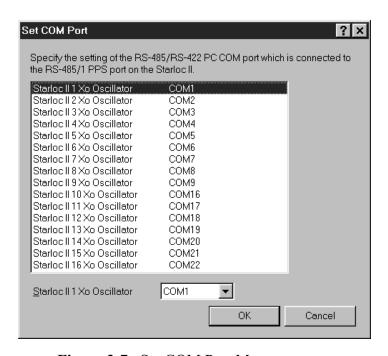


Figure 3-7. Set COM Port Menu

UTC Timing GPS PPS
UTC Timing UTC PPS
UTC Timing UTC PPS
GPS Timing
Submenu of available GlobalSync units

Properties System Operation Properties window overlaid on current screen; allows

entry of the Station ID, S/N, User Name, etc.

CONTROL Menu (when disabled)

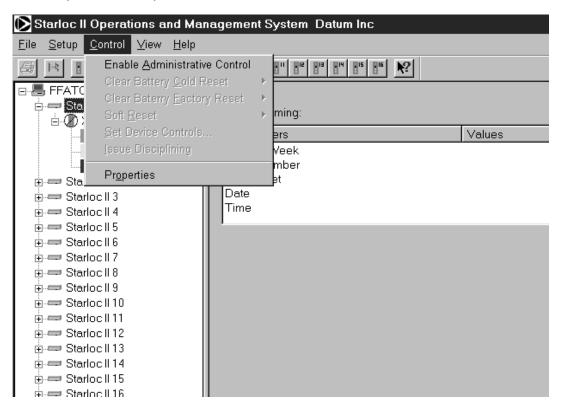


Figure 3-8. Control Menu (When Disabled)

Enable Administrative Control: Dialog Box to enter control password

Figure 3-9. Enable Administrative Control menu

Properties:

Dialog Box for changing the administration control password

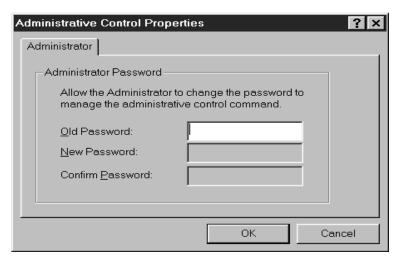
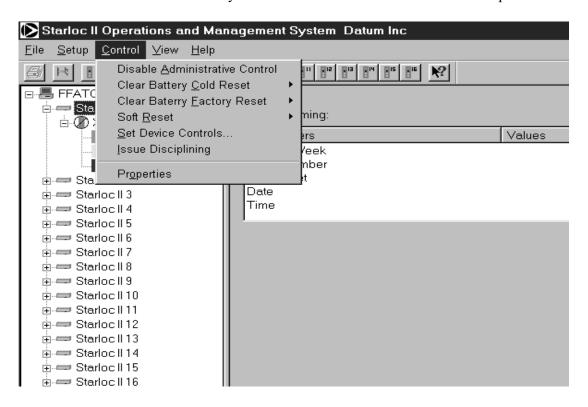



Figure 3-10. Administrative Control Properties Menu

CONTROL Menu (when enabled)

Disable Administrative Control: may be selected to return to non administrative operations.

Figure 3-11. Control Menu (When Enabled)

Factory Reset:

Factory Reset restores the non-volatile RAM to the factory default settings and performs a Soft Reset.

CAUTION: This command will delete the stored position and will cause self-survey to restart.

Soft Reset:

This command performs a software reset where the GPS Receiver performs a self-test and outputs the start-up messages. This command is not equivalent to cycling the power and does not clear the NV RAM.

Set Device Controls: Set 1PPS Offset

NOTE: Before any device controls can be changed, a System Administrator Password must be established, and the Administrative Controls must be Enabled.

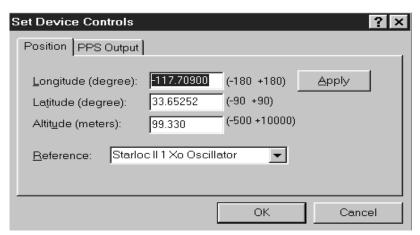


Figure 3-12. Set Device Controls Menu

The following settings may be changed with this feature:

Position:

The **GlobalSync** will determine position autonomously; however, it may take up to 24 hours to achieve high accuracy. The following parameters can be used to establish the initial position of the GPS Receiver without having to wait 24 hours.

Longitude Latitude Altitude

The initial position provides the GPS Receiver with a starting point to begin the satellite acquisition process.

CAUTION: If these values are assigned incorrectly, the system may be unstable for up to 48 hours.

PPS Output:

The PPS Output is used to set the PPS characteristics. In PPS Output, enter the PPS offset or cable delay. Negative offset values advance the PPS, and are normally used to compensate for cable delay.

Set Self Survey:

The factory setting for Self Survey is 14,400 accumulated seconds.

Issue Disciplining: Dialog Box allowing choice of disciplining methods

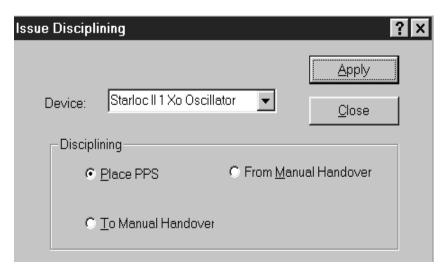


Figure 3-13. Issue Disciplining Menu

VIEW MENU

Toolbar Turn top toolbar display on or off
Status Bar Turn bottom status display on or off
Primary Timing Submenu of available GlobalSync units
GPS Receiver Submenu of available GlobalSync units
System Status Submenu of available GlobalSync units
Disciplining Activity Submenu of available GlobalSync units

Appendix A

TimeKeeper Communications Packet Structure

When a PC with a standard communications protocol is cabled to the GlobalSync RS232 comm port the TimeKeeper firmware resident in the onboard processor will recognize and respond to typed ASCII commands. Each command (request) defines a single or multiple event function that calls for multiple events to be scheduled and or processed.

When a message is received and the message type determined the process begins; all message types are handled in an almost identical process. The Response Processor task receives a system message from the Parser input task. This message contains a pointer to a buffer that contains a data structure of type USER_MSG. Contained within the data structure is a command type, count and a character message buffer. The content of the message buffer will be the message received from the user interface. An example of the message structure is presented below.

The response task uses the value stored in the data structure Cmd as a value to index to the specific command and its function code. Each command function calls the Command Manager function (CmdCoreMgrCmd) with a pointer to the received data structure. The Command Manager routine also uses the content of the Cmd value to index to the specific command routine. If the content of the message is determined to be a command, the data specific to this function will parse and reviewed for the operation that is to be performed. If the command has no processing requirements and no errors are detected a TRUE value is returned. If a response message is required, a specific command function will be called to build the response.

Each command has a response function. Each works the same way but will contain different data. An output message is allocated and a pointer to this message buffer is sent to the response function. The response function allocates a data structure specific to its function. The function type is stored in the data structure and the function CmdCoreMgrResp is called. The CmdCoreMgrResp routine uses the function type and indexes to the specific function routines. The contents of the data structure are then filled with the command specific data and returned the response function routine. The response function now has all of the data necessary to return a response message to the GlobalSync and the user's PC over the COM link. The response function builds the response message based on the received message type. The commands and response data are formatted into a serial message sequence and sent to the User Output task where it will be Que'd for transmission.

A list of supported ASCII commands is presented on the following pages.

GlobalSync TimeKeeper ASCII Command List and Responses

(Command - Description	Supported/Used?	Response
0x1E	Clear Battery Backup and Reset (No CMOS memory available)	Yes/Yes	System will Reset
	Factory Reset	Yes/Yes	Factory Reset copies system ROM defaults to NV RAM.
0x1F	Software Version	Yes/Yes	Response Packet 0x45
0x24	Request All in View Satellites	Yes/Yes	Response Packet 0x6D
0x25	Soft Reset	Yes/Yes	The system performs soft Reset.
0x27	Satellite Signal Levels	Yes/yes	Response Packet 0x47
0x29	Almanac Health	Yes/No	Response Packet 0x49
0x31	Set Accurate Initial Position (Cartesian data is not used)	Yes/No	Response Packet 0x42
0x32	Set Accurate Initial Position (Packet 0x4A is not supported, Data is in Radians)	Yes/Yes	Response Packet 0x43
0x34	One Satellite Mode	Yes/No	
0x35	IO Options (Packet 0x55 is not supported.) Packet 0x5A is not supported.)	Yes/No	
0x37	Request Last Position Packet 0x56 is not supported Packet 0x57 is not supported	No/No	(Auto Command 0x8F-AC reports last position)

	Command - Description	Supported/Used?	Response	
0x38	Request Sat Data (Packet 0x58 not supported)	Yes/No	default zero data supplied.	
0x39	Set or Request SV Disable Packet 0x59 is not supported.	Yes/No	default zero data supplied.	
0x3A	Request last Raw Measurement	Yes/No		
0x3B	Request Current Status Packet 0x5B is not supported	Yes/No	default zero data supplied.	
0x3C	Request Current Satellite	Yes/Yes	data is supplied in Packet 0x5C.	
0x70	Filter Configuration	Yes/Yes	default zero data supplied.	
0x83	Double Precision XYZ	Yes/Not enabl	Yes/Not enabled	
0x84	Double Precision LLA	Yes/Not enabl	Yes/Not enabled	
0xBB	Receiver Configuration	Yes/No		
0xBC	Set Port Configuration	Yes	Communicaton port assigned	
0x8E-	15 Set/Request Datum Command is supported but not used.	Yes/No	Packet 0x8F-15 return default 0 values	
0x8E-	41 Request Mfg Parameters .	Yes/Yes	Packet 0x8F-41 return and supplies NV Data	
0x8E-	42 Request Production Parameters	Yes/Yes	Packet 0x8F-42 return and supplies NV Data	
0x8E-	45 Revert Default Settings	Yes/Yes	Packet 0x8F-45 return and supplies NV Data.	
0x8E-	4A Set PPS Characteristics	Yes/Yes	Packet 0x8F-4A return and supplies NV Data	
0x8E-	4C Save Segment to EEPROM	Yes/Yes	Packet 0x8F-4C return and supplies NV Data	

Con	nmand - Description	Supported/Used?	Response
0x8E-A0	Set DAC Value	Yes/Yes	Packet 0x8F-A0 return DAC values
0x8E-A1	10 MHz Sense	Yes/Yes	Packet 0x8F-A1 return default Rising edge
0x8E-A2	UTC/GPS Timing	Yes/Yes	Packet 0x8F-A2 return status
0x8E-A3	Issue Disciplining Commands	Yes/Yes	Packet 0x8F-A3 return command acknowledgement
0x8E-A4	Test Modes	Yes/Yes	Packet 0x8F-A4 return default zero values.
0x8E-A5	Packet Broadcast Mask Format 0 and Format 1 not suppor returns data zero	Yes/Yes ted,	Packet 0x8F-A5 Solution
0x8E-A6	Request Mfg Parameters	Yes/Yes	Packet 0x8F-A6 return command
0x8E-A8	Request Mfg Parameters	Yes/Yes	Packet 0x8F-A8 returns disciplining data
0x8E-A9	Self Survey	Yes/Yes	Packet 0x8F-A9 returns system status.

Datum

3 Parker Irvine, CA 92618-1605 (949) 598-7600 F AX: (949) 598-7650